skip to content

School of Clinical Medicine

 
Subscribe to News feed
News from the School of Clinical Medicine at the University of Cambridge.
Updated: 5 min 57 sec ago

Young adults generally more active after starting work, but sleep less – unless working from home

Tue, 28/01/2025 - 00:01

The increase in physical activity was mainly seen in those doing semi-routine occupations such as bus driving or hairdressing, and routine occupations such as cleaning or waiting, or technical jobs. There was little change seen among people entering managerial or professional occupations.

People who work from home saw a decrease in levels of physical activity – though their sleep levels did not change when they started work.

Young adulthood – ages 16 to 30 years – is an important time in terms of health. Although we are typically at our peak physical health, it is also a time when many risk factors for long term diseases such as heart disease, type 2 diabetes and cancer begin to develop.

Health guidelines recommend young adults get between seven and nine hours of sleep a night, engage in 150 minutes or more of moderate physical activity per week, and consume at least five portions of fruit and vegetables per day.

Young adulthood is also the time when most people start work, which changes their daily routines and activities, resources such as time and money, and social and physical environments – all of which affect health behaviours and health in later life.

To quantify the impact that starting work has on health-related behaviours, a team led by researchers at the Medical Research Council (MRC) Epidemiology Unit at the University of Cambridge examined repeated data taken over time from more than 3,000 participants in the UK Household Longitudinal Study. All the participants were aged 16–30 years and started work for the first time between 2015 and 2023.  

The results are published today in the International Journal of Behavioral Nutrition and Physical Activity.

Dr Eleanor Winpenny, who was based at the University of Cambridge when she carried out the work, but is now at Imperial College London, said: “We know about physical activity and sleep patterns among young people while they’re at school, but very little about what happens when they start work. Given the impact that work can have on our lives – and the lasting impacts this can have on our health – it’s important to try and understand what happens at this transition.”

The analysis showed that when people started work, their physical activity increased by an amount equivalent to around 28 min of moderate activity (such as cycling) per day on average – but then decreased each year after starting work by around 7 min per day.

The biggest increase was among males – up by an equivalent of around 45 min of moderate activity per day compared to an increase of around 16 min for females. People who did not have a university degree also showed a greater increase in physical activity compared to those with a university degree – equivalent to around a 42 min increase of moderate physical activity per day compared to 15 min per day.

Working from home, however, appeared to be associated with an initial decrease in physical activity, equivalent to around 32 min of moderate activity per day.

When young adults started work, the amount of time they slept per night dropped immediately by almost 10 minutes and remained stable at this level over time; however, people without a degree showed a continuing decrease of about 3 minutes of sleep per night each year after starting work, while those with a degree slowly increased back to their pre-work sleep levels.

There was little change in the amount of fruit and vegetables consumed after starting work.

Alena Oxenham, from the MRC Epidemiology Unit, said: “Beginning work can have a profound impact on our lifestyles and on behaviours that might make a difference to our health, if not immediately then later in life.

“Although we found that people tend to do more physical activity when they begin work, which is good news, these are averages, and some people – particularly those who work from home and, to a lesser degree, those with office-based jobs – may do less.

“If we want to stay healthy throughout our lives, we need to remember that keeping active is an important way of helping us achieve this goal. Those working at home might want to consider incorporating physical activity into their day, for example by going for a walk before or after work, or during a lunch break.”

Dr Winpenny added: “Workplaces provide an opportunity to create environments and cultures that support healthier diets, more physical activity and better sleep for young adults. This could result in healthier employees and fewer sick days in the immediate term, but also have long term benefits, helping prevent health issues in later life.”

The research was funded by the MRC and the National Institute for Health and Care Research.

Reference
Oxenham, AF, et al. New job, new habits? A multilevel interrupted time series analysis of changes in diet, physical activity and sleep among young adults starting work for the first time. International Journal of Behavioral Nutrition and Physical Activity; 28 Jan 2025; DOI: 10.1186/s12966-024-01682-8

When young adults start working, the amount of daily physical activity they do increases sharply, only to fall away again over the new few years, while the amount of sleep they get falls slightly, according to new research led by scientists at the University of Cambridge.

If we want to stay healthy throughout our lives, we need to remember that keeping active is an important way of helping us achieve this goalAlena OxenhamRoman KoesterCyclist in London


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Cambridge researchers developing brain implants for treating Parkinson’s disease

Thu, 23/01/2025 - 10:33

As part of a £69 million funding programme supported by the Advanced Research + Invention Agency (ARIA), Professor George Malliaras from Cambridge’s Department of Engineering will co-lead a project that uses small clusters of brain cells called midbrain organoids to develop a new type of brain implant, which will be tested in animal models of Parkinson’s disease.

The project led by Malliaras and Professor Roger Barker from the Department of Clinical Neurosciences, which involves colleagues from the University of Oxford, the University of Lund and BIOS Health, is one of 18 projects funded by ARIA as part of its Precision Neurotechnologies programme, which is supporting research teams across academia, non-profit R&D organisations, and startups dedicated to advancing brain-computer interface technologies.

The programme will direct £69 million over four years to unlock new methods for interfacing with the human brain at the neural circuit level, to treat many of the most complex neurological and neuropsychiatric disorders, from Alzheimer’s to epilepsy to depression.

By addressing bottlenecks in funding and the lack of precision offered by current approaches, the outputs of this programme will pave the way for addressing a much broader range of conditions than ever before, significantly reducing the social and economic impact of brain disorders across the UK.

Parkinson’s disease occurs when the brain cells that make dopamine (a chemical that helps control movement) die off, causing movement problems and other symptoms. Current treatments, like dopamine-based drugs, work well early on, but can cause serious side effects over time.

In the UK, 130,000 people have Parkinson’s disease, and it costs affected families about £16,000 per year on average – more than £2 billion in the UK annually. As more people age, the number of cases will grow, and new treatments are urgently needed.

One idea is to replace the lost dopamine cells by transplanting new ones into the brain. But these cells need to connect properly to the brain’s network to fix the problem, and current methods don’t fully achieve that.

In the ARIA-funded project, Malliaras and his colleagues are working on a new approach using small clusters of brain cells called midbrain organoids. These will be placed in the right part of the brain in an animal model of Parkinson’s disease. They’ll also use advanced materials and electrical stimulation to help the new cells connect and rebuild the damaged pathways.

“Our ultimate goal is to create precise brain therapies that can restore normal brain function in people with Parkinson’s,” said Malliaras.

“To date, there’s been little serious investment into methodologies that interface precisely with the human brain, beyond ‘brute force’ approaches or highly invasive implants,” said ARIA Programme Director Jacques Carolan. “We’re showing that it’s possible to develop elegant means of understanding, identifying, and treating many of the most complex and devastating brain disorders. Ultimately, this could deliver transformative impact for people with lived experiences of brain disorders.”

Other teams funded by the programme include one at Imperial College London who is developing an entirely new class of biohybridised technology focused on engineering transplanted neurons with bioelectric components. A Glasgow-led team will build advanced neural robots for closed-loop neuromodulation, specifically targeting epilepsy treatment, while London-based Navira will develop a technology for delivering gene therapies across the blood-brain barrier, a crucial step towards developing safer and more effective treatments.

Adapted from an ARIA media release.

Cambridge researchers are developing implants that could help repair the brain pathways damaged by Parkinson’s disease.

Our ultimate goal is to create precise brain therapies that can restore normal brain function in people with Parkinson’sGeorge MalliarasScience Photo Library via Getty ImagesSubstantia nigra in the human brain, illustration


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

£10 million programme to use AI and state-of-the-art analytics to fight cancer

Wed, 22/01/2025 - 00:05

The Cancer Data-Driven Detection programme will be led by Antonis Antoniou, Professor of Cancer Risk Prediction at the University of Cambridge. It is funded by Cancer Research UK, the National Institute for Health and Care Research, and the Engineering and Physical Sciences Research Council.

The programme aims to access and link data from different sources - including health records, genomics, family history, demographics, and behavioural data - to develop statistical models that help scientists accurately predict who is most likely to get cancer. Alongside this, the programme will develop powerful new tools that use AI to analyse the data and calculate an individual’s risk of cancer throughout their lifetime.

Professor Antoniou said: “Finding people at the highest risk of developing cancer, including those with vague symptoms, is a major challenge. The UK’s strengths in population-scale data resources, combined with advanced analytical tools like AI, offer tremendous opportunities to link disparate datasets and uncover clues that could lead to earlier detection, diagnosis, and prevention of more cancers.”

Over the next five years, the funding will build the infrastructure required to access and link these datasets, train new data scientists, create the algorithms behind the risk models and evaluate the algorithms and AI tools to ensure that they are giving accurate and clinically useful information about cancer risk. The scientific programme will be guided by partnerships with cancer patients, the public, clinical experts and industry, while addressing ethical and legal considerations to ensure that the models and tools work well in practice.

Professor Antoniou added: “Ultimately, [the Cancer Data Driven Detection programme] could inform public health policy and empower individuals and their healthcare providers to make shared decisions. By understanding individual cancer risks, people can take proactive steps to stop cancer before it gets worse or even begins in the first place.”

The models generated from this research could be used to help people at higher risk of cancer in different ways. For example, the NHS could offer more frequent cancer screening sessions or screening at a younger age to those at higher risk, whilst those at lower risk could be spared unnecessary tests. People identified as higher risk could also be sent for cancer testing faster when they go to their GP with possible cancer signs or symptoms. Individuals at higher risk could also access different ways to prevent cancer.

Earlier diagnosis of cancer saves lives, yet according to analysis of NHS figures by Cancer Research UK, only 54% of cancers in England are diagnosed at stages one and two, where treatment is more likely to be successful. NHS England has set a target to diagnose 75% of cancers at stages one and two by 2028, and this will only be achieved with research and embracing new technologies to catch cancer earlier.  

Last week, the Prime Minister announced backing for the power of big data and AI, which has the potential to help even more patients, including those with cancer.

Science Minister Lord Vallance said: “There are huge opportunities in AI to improve UK healthcare, from scans detecting illnesses earlier to bringing NHS waiting lists down by planning appointments more efficiently, and these will continue to develop.

“This investment in harnessing the potential of data to spot those at risk of cancer represents the sort of innovation the Government’s new AI Opportunities Action Plan sets out to realise, so this technology improves lives, while transforming public services and boosting growth.”

Minister for Public Health and Prevention, Andrew Gwynne said: “Using the latest technology could revolutionise how the NHS diagnoses and treats patients. As part of this government’s Plan for Change, we will transform our health service from analogue to digital, and innovative projects like this show exactly how we will achieve it.” 

The Cancer Data Driven Detection programme is jointly supported by Cancer Research UK, the National Institute for Health & Care Research, the Engineering & Physical Sciences Research Council, Health Data Research UK, and Administrative Data Research UK.

Head of Prevention and Early Detection Research at Cancer Research UK, Dr David Crosby, said: “The single most important thing we can do to beat cancer is to find it earlier, when treatment is more likely to be successful. With half a million cancer cases per year expected in the UK by 2040, we need a major shift towards more accurate diagnosis and detection of early cancer.”

Find out how Cambridge is Changing the Story of Cancer

Adapted from a press release from Cancer Research UK

Cambridge researchers are to lead a £10million project that could result in doctors being able to predict your individual chances of getting cancer and offer personalised detection and prevention.

The UK’s strengths in population-scale data resources, combined with advanced analytical tools like AI, offer tremendous opportunities to link disparate datasets and uncover clues that could lead to earlier detection, diagnosis, and prevention of more cancersAntonis AntoniouBrianPenny (Pixabay)Image representing AI and Big Data


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Antibiotics, vaccinations and anti-inflammatory medication linked to reduced risk of dementia

Tue, 21/01/2025 - 12:00

The study, led by researchers from the universities of Cambridge and Exeter, identified several drugs already licensed and in use that have the potential to be repurposed to treat dementia.

Dementia is a leading cause of death in the UK and can lead to profound distress in the individual and among those caring for them. It has been estimated to have a worldwide economic cost in excess of US$1 trillion dollars.

Despite intensive efforts, progress in identifying drugs that can slow or even prevent dementia has been disappointing. Until recently, dementia drugs were effective only for symptoms and have a modest effect. Recently, lecanemab and donanemab have been shown to reduce the build-up in the brain of amyloid plaques – a key characteristic of Alzheimer’s disease – and to slow down progression of the disease, but the National Institute for Health and Care Excellence (NICE) concluded that the benefits were insufficient to justify approval for use within the NHS.

Scientists are increasingly turning to existing drugs to see if they may be repurposed to treat dementia. As the safety profile of these drugs is already known, the move to clinical trials can be accelerated significantly.  

Dr Ben Underwood, from the Department of Psychiatry at the University of Cambridge and Cambridgeshire and Peterborough NHS Foundation Trust, said: “We urgently need new treatments to slow the progress of dementia, if not to prevent it. If we can find drugs that are already licensed for other conditions, then we can get them into trials and – crucially – may be able to make them available to patients much, much faster than we could do for an entirely new drug. The fact they are already available is likely to reduce cost and therefore make them more likely to be approved for use in the NHS.”

In a study published today in Alzheimer’s and Dementia: Translational Research & Clinical Interventions, Dr Underwood, together with Dr Ilianna Lourida from the University of Exeter, led a systematic review of existing scientific literature to look for evidence of prescription drugs that altered the risk of dementia. Systematic reviews allow researchers to pool several studies where evidence may be weak, or even contradictory, to arrive at more robust conclusions.

In total, the team examined 14 studies that used large clinical datasets and medical records, capturing data from more than 130 million individuals and 1 million dementia cases. Although they found a lack of consistency between studies in identifying individual drugs that affect the risk of dementia, they identified several drug classes associated with altered risk.

One unexpected finding was an association between antibiotics, antivirals and vaccines, and a reduced risk of dementia. This finding supports the hypothesis that common dementias may be triggered by viral or bacterial infections, and supports recent interest in vaccines, such as the BCG vaccine for tuberculosis, and decreased risk of dementia.

Anti-inflammatory drugs such as ibuprofen were also found to be associated with reduced risk. Inflammation is increasingly being seen to be a significant contributor to a wide range of diseases, and its role in dementia is supported by the fact that some genes that increase the risk of dementia are part of inflammatory pathways.

The team found conflicting evidence for several classes of drugs, with some blood pressure medications and anti-depressants and, to a lesser extent, diabetes medication associated with a decreased risk of dementia and others associated with increased risk.

Dr Ilianna Lourida from the National Institute for Health and Care Research Applied Research Collaboration South West Peninsula (PenARC), University of Exeter, said: “Because a particular drug is associated with an altered risk of dementia, it doesn’t necessarily mean that it causes or indeed helps in dementia. We know that diabetes increases your risk of dementia, for example, so anyone on medication to manage their glucose levels would naturally also be at a higher risk of dementia – but that doesn’t mean the drug increases your risk.

“It’s important to remember that all drugs have benefits and risks. You should never change your medicine without discussing this first with your doctor, and you should speak to them if you have any concerns.”

The conflicting evidence may also reflect differences in how particular studies were conducted and how data was collected, as well as the fact that different medications even within the same class often target different biological mechanisms.

The UK government is supporting the development of an Alzheimer’s trial platform to evaluate drugs rapidly and efficiently, including repurposed drugs currently used for other conditions.

“Pooling these massive health data sets provides one source of evidence which we can use to help us focus on which drugs we should try first,” said Dr Underwood. “We’re hopeful this will mean we can find some much-needed new treatments for dementia and speed up the process of getting them to patients.”

Reference
Underwood, BU & Lourida, I et al. Data-driven discovery of associations between prescribed drugs and dementia risk: A systematic review. Alz & Dem; 21 Jan 2025; DOI: 10.1002/trc2.70037

Antibiotics, antivirals, vaccinations and anti-inflammatory medication are associated with reduced risk of dementia, according to new research that looked at health data from over 130 million individuals.

We urgently need new treatments to slow the progress of dementia, if not to prevent it. If we can find drugs that are already licensed for other conditions, then we can get them into trials much faster than we could do for an entirely new drugBen UnderwoodAndrzej Rostek (Getty Images)Elderly Woman's Hands and Orange Pills


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Cambridge Cancer Research Hospital given green light by government

Tue, 21/01/2025 - 08:00

Cambridge Cancer Research Hospital (CCRH) will transform how we diagnose and treat cancer. It will bring together world-leading research and clinical excellence to change the lives of cancer patients across the East of England, the UK and beyond.

The Hospital was part of the government’s review of its New Hospitals Programme. In naming the project as one of the Cohort 2 schemes that already has advanced plans and made significant progress on its full business case, the government confirmed that preparations can go ahead for construction to start in 2026. It remains on track to be built by 2029.

Cambridge Cancer Research Hospital, a partnership between Cambridge University Hospitals and the University of Cambridge, will combine NHS clinical space with three new state-of-the-art research institutes that will support the ambitions set out in the government's new NHS ten-year plan.

Bringing together world-class NHS clinicians with cutting-edge University and industry-led research, the hospital will accelerate the early detection of cancer and prevention of illness, and lead the way in delivering bespoke, precision treatments that will radically improve patient outcomes.

Professor Deborah Prentice, Vice-Chancellor of the University of Cambridge, said: “This is excellent news for the future of Cambridge Cancer Research Hospital, which promises to have a huge impact on how we diagnose and treat cancer, not only in our region, but globally.

“Our teams are also working hard to secure much-needed philanthropic support to complement the funding committed by the NHS and the University. Generous donations will help realise our vision for this revolutionary, and much-needed, research hospital.”

Find out more about the hospital that will change the story of cancer forever here.

The Secretary of State for Health and Social Care has announced that ambitious plans can proceed for Cambridge Cancer Research Hospital, which promises to change the story of cancer forever.

Our teams are also working hard to secure much-needed philanthropic support to complement the funding committed by the NHS and the University. Generous donations will help realise our vision for this revolutionary, and much-needed, research hospitalDeborah Prentice, Vice-Chancellor The hospital that will change the story of cancer forever Cambridge Cancer Research Hospital - artist's impression


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

People who are autistic and transgender/gender diverse have poorer health and health care

Tue, 21/01/2025 - 01:00

Researchers at the Autism Research Centre at Cambridge University found that these individuals also report experiencing lower quality healthcare than both autistic and non-autistic people whose gender identity matches their sex assigned at birth (cisgender).

The findings have important implications for the healthcare and support of autistic transgender/gender diverse (TGD) individuals. This is the first large-scale study on the experiences of autistic TGD people and the results are published today in Molecular Autism.  

Previous research suggests that both autistic people and TGD people separately have poorer healthcare experiences and are more likely to be diagnosed with physical and mental health conditions than other people. In addition, a 2020 study of over 640,000 people, carried out by the Autism Research Centre in Cambridge, found that TGD people are more likely to be autistic and have higher levels of autistic traits than other people. Several other studies now confirm this finding and show that autistic people are more likely to experience gender dysphoria than others. Despite these findings, there are no studies that consider risks of mental health conditions, physical health conditions, and healthcare quality among autistic TGD people.

In the largest study to date on this topic, the team at the Autism Research Centre used an anonymous, self-report survey to compare the experiences of 174 autistic TGD individuals, 1,094 autistic cisgender individuals, and 1,295 non-autistic cisgender individuals.

The survey assessed rates of mental health conditions and physical health conditions, as well as the quality of 51 different aspects of healthcare experiences. The healthcare experiences questions were wide-ranging and included questions about communication, anxiety, access and advocacy, system-level issues, and sensory experiences among others. They addressed several very basic aspects of healthcare, including asking participants to endorse statements such as ‘If I need to go to see a healthcare professional, I am able to get there’, ‘I am able to describe how bad my pain feels’, and ‘I usually understand what my healthcare professional means when they discuss my health’.

Both autistic TGD and autistic cisgender adults reported significantly poorer healthcare experiences across 50 out of 51 items compared with non-autistic cisgender people, confirming that autistic people appear to have poorer quality healthcare than non-autistic cisgender individuals, regardless of their own gender identity.

Compared to non-autistic cisgender individuals, autistic TGD people were three to 11 times more likely to report anxiety, shutdowns, and meltdowns related to common healthcare experiences.

For every 10 cisgender non-autistic adults who endorsed the following statements, on average, only two autistic cisgender adults and only one autistic TGD adult stated that they: (i) understood what their healthcare professional meant when discussing their health; (ii) knew what was expected of them when seeing a healthcare professional; or (iii) were able to describe how bad their pain felt.

Autistic TGD people and autistic cisgender people were more likely to report both long-term physical and mental health conditions that were formally diagnosed, suspected, or that had been recommended for assessment by clinicians. For every 10 non-autistic cisgender people who had at least one diagnosed physical health condition, there were 15 autistic cisgender people and 23 autistic TGD people. For every 10 non-autistic cisgender people who reported at least one diagnosed mental health condition, there were 50 autistic cisgender people and 109 autistic TGD people who reported the same.

Alarmingly, it is now well-established that autistic people and TGD people are each at a much higher risk of suicide and suicide-related behaviours than other people. In 2023, the Department of Health and Social Care specifically recognized autistic people as a priority group in their Suicide prevention strategy for England: 2023 to 2028. The new study found that, compared to people who are non-autistic and cisgender, autistic cisgender individuals were 4.6 times more likely and autistic TGD people were 5.8 times more likely to report self-harm.

Dr Elizabeth Weir, a postdoctoral scientist at the Autism Research Centre, and one of the lead researchers of the study, said: “These findings add to the growing body of evidence that many autistic people experience unacceptably poor mental health and are at a very high risk of suicide-related behaviours. We need to consider how other aspects of identity, including gender, influence these risks.” 

These results emphasise the importance of considering intersectionality in clinical settings, including health risks for individuals who hold multiple minoritised identities. The researchers say clinicians should be aware of these risks and the unique barriers to healthcare that autistic TGD people may experience. The findings also underscore that people who are autistic and transgender/gender diverse experience particularly high rates of mental health conditions and risks of self-harm.

Professor Sir Simon Baron-Cohen, Director of the Autism Research Centre and a member of the team, said: “We need to consider how to adapt healthcare systems and individual care to meet the needs of autistic transgender/gender diverse people. Policymakers, clinicians, and researchers should work collaboratively with autistic people to improve existing systems and reduce barriers to healthcare.”

Reference
Green, K.*, Weir, E.*, Wright, L.*, Allison, C., & Baron-Cohen, S. Autistic and transgender/gender diverse people’s experiences of health and healthcare. Molecular Autism; 21 Jan 2025; DOI: 10.1186/s13229-024-00634-0

Autistic transgender/gender diverse individuals are more likely to have long-term mental and physical health conditions, including alarmingly high rates of self-harm, new research from the University of Cambridge suggests.

These findings add to the growing body of evidence that many autistic people experience unacceptably poor mental health and are at a very high risk of suicide-related behavioursElizabeth WeirKyle (Unsplash)Woman with transgender flag make-up


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Cambridge leads governmental project to understand impact of smartphones and social media on young people

Thu, 16/01/2025 - 00:01

The work has been commissioned by the UK government’s Department for Science, Innovation and Technology after a review by the UK Chief Medical Officer in 2019 found the evidence base around the links to children’s mental health were insufficient to provide strong conclusions suitable to inform policy.

The project – led by a team at the University of Cambridge, in collaboration with researchers at several leading UK universities – is aimed at improving policymakers’ understanding of the relationship between children’s wellbeing and smartphone use, including social media and messaging. It will help direct future government action in this area.

Project lead Dr Amy Orben from the Medical Research Council Cognition and Brain Sciences Unit (MRC CBU) at the University of Cambridge said: “There is huge concern about the impact of smartphone use on children's health, but the evidence base remains fairly limited. While the government is under substantial time pressure to make decisions, these will undoubtedly be better if based on improved evidence.

“This is a complex and rapidly evolving issue, with both potential harms and benefits associated with smartphone use. Technology is changing by the day, and scientific evidence creation needs to evolve and innovate to keep up.

“Our focus will be on deepening our causal understanding of the effects of new technologies, particularly over short timescales, to ensure that decisions are informed, timely and evidence-based.”

Dr Orben will lead a Project Delivery Team, with Consortium Members from the universities of Bath, Birmingham, Bristol, Glasgow, Manchester, Nottingham, Oxford and York and the London School of Economics. It will aim to identify which research methods and data sources will be most effective at identifying potential causal relationships between social media, smartphones, and the health and development of children and young people

Deputy project lead Dr Amrit Kaur Purba, also from the MRC CBU at Cambridge, said: “The impact of social media on young people is a pressing issue, and our project will ensure the research community is in a strong position to provide policymakers with the causal and high-quality insights they need. While we don’t expect this to be straightforward, our research will leverage diverse expertise from across the UK to deliver a comprehensive and informed response to make recommendations for how research in this area should be supported in future.”

The researchers will review and summarise existing research on the impact of smartphones and social media on children and young people’s mental health, wellbeing, physical health, lifestyle and health behaviours, and educational attainment. The review will recognise the diversity of perspectives that exist in this area and consider where further research could add valuable new insights to the evidence base. 

They will assess the various methods and data available to understand the causal impacts, including recognising that online habits and emerging technologies are changing at a rapid pace, and considering how the experiences of vulnerable children and young people – for example, LGBTQ+ young people and those with special needs or mental health issues – can be captured in future research projects.

This will allow the team to recommend and outline how future research studies could deliver robust and causal evidence on the impact of smartphones and social media on child development factors in the next two to three years.

Technology Secretary Peter Kyle, said: "The online world offers immense opportunities for young people to connect and learn. Ensuring they can do so in an environment which puts their safety first is my priority and will guide this government’s action on online safety.  

“That’s why we have launched new research, led by the University of Cambridge with support from other top UK universities, to better understand the complex relationship between technology and young people's wellbeing.

“This vital research will build a trusted evidence base for future action, helping us to protect and empower the next generation towards a safer and more positive digital future."

Cambridge researchers are leading the first phase of a new research project that will lay the groundwork for future studies into the impact on children of smartphone and social media use.

This is a complex and rapidly evolving issue, with both potential harms and benefits associated with smartphone use. Technology is changing by the day, and scientific evidence creation needs to evolve and innovate to keep upAmy OrbenOwen FrankenTeenager holding a smartphone


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes