Dementia patients and their carers to be asked about direction of drug research
Today sees the launch of the POrtal for Patient and Public Engagement in Dementia Research (POPPED) website, where anyone can give their feedback on dementia research projects.
Dementia affects 50 million people worldwide and 1 million people in the UK. Current treatments are limited, but research has led to some significant recent advances. For example, the first drugs which slow down the disease are now licensed in the UK and potential dementia blood tests are being trialled.
Scientists are also turning to existing drugs to see if they may be repurposed to treat dementia. As the safety profile of these drugs is already known, the move to clinical trials can be accelerated significantly. Researchers want to ask members of the public which drugs they would like to see prioritised for these clinical trials.
Dr Ben Underwood, from the Department of Psychiatry at the University of Cambridge and Cambridgeshire and Peterborough NHS Foundation Trust, said: “One thing that always improves research into medical conditions is the involvement of people with experience of them – in many respects, you are the experts, rather than us.
“As dementia is common, almost everyone has some experience of it, either through family, friends, work or meeting people with dementia in general life. It’s a problem across society and we want a wide range of opinions for the best way to tackle it.”
Dr Underwood has teamed up with Linda Pointon, a Programme Manager at the Department of Psychiatry, to create a website where everyone can give their feedback on dementia research projects. Linda herself has experience of caring for her mother-in-law, who had frontotemporal dementia and passed away in 2020.
Linda said: “We’re launching our website because we want as many people as possible to share their views and help us guide the direction of our research. It’s a great opportunity for all of us who have been affected by dementia, either directly or caring for a friend or relative, to help researchers understand what aspects of these potential treatments are important and meaningful, both in terms of benefits and side-effects.”
The information collected by the POPPED team will be used to help inform AD-SMART, a trial to be led by Imperial College London, which will test several existing drugs alongside a placebo to quickly determine if any can slow early Alzheimer’s progression.
Dr Underwood added: “Instead of asking a few people what might be helpful, our website gives us the opportunity to ask thousands of people. The more people who use it, the more powerful it will be, so I’d encourage everyone to visit the site and tell us what they think. We can use it to work together to beat dementia, a condition whose effects I see in my clinic every day.”
Cambridge researchers are seeking the views of people with lived experience of dementia – patients and their friends and families – on which existing drugs should be repurposed for clinical trials to see whether they can slow or halt the progress of dementia.
One thing that always improves research into medical conditions is the involvement of people with experience of them – in many ways, they are the experts, not usBen UnderwoodToa55 (Getty Images)Elderly woman putting pills into pill box for the week - stock photo
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Cambridge and London hospitals to pioneer brain implants to combat alcohol and opioid addiction
The technique – known as deep brain stimulation – is to be trialled at Addenbrooke’s Hospital, Cambridge, and King’s College Hospital, London. The team behind the Brain-PACER: Brain Pacemaker Addiction Control to End Relapse study is currently recruiting individuals with severe alcohol or opioid addiction who are interested in taking part.
Deep brain stimulation (DBS) is a neurosurgical procedure that delivers ongoing stimulation to the brain. DBS acts as a brain pacemaker to normalise abnormal brain activity. It is well-tolerated, effective and widely used for neurological disorders and obsessive compulsive disorder.
Although there have been several proof-of-concept studies that suggest DBS is effective in addictions, Brain-PACER – a collaboration between the University of Cambridge, Kings College London and the University of Oxford – is the first major, multicentre study to use DBS to treat craving and relapse in severe addiction.
Chief Investigator Professor Valerie Voon, from the Department of Psychiatry at the University of Cambridge, said: “While many people who experience alcohol or drug addiction can, with the right support, control their impulses, for some people, their addiction is so severe that no treatments are effective. Their addiction is hugely harmful to their health and wellbeing, to their relationships and their everyday lives.
“Initial evidence suggests that deep brain stimulation may be able to help these individuals manage their conditions. We’ve seen how effective it can be for other neurological disorders from Parkinson’s to OCD to depression. We want to see if it can also transform the lives of people with intractable alcohol and opioid addiction.”
The primary aim of the Brain-PACER study is to assess the effects of DBS to treat alcohol and opioid addiction in a randomised controlled trial study. Its mission is twofold: to develop effective treatments for addiction and to understand the brain mechanisms that drive addiction disorders.
DBS is a neurosurgical treatment that involves implanting a slender electrode in the brain and a pacemaker under general anaesthesia. These electrodes deliver electrical impulses to modulate neural activity, which can help alleviate symptoms of various neurological and psychiatric disorders.
Keyoumars Ashkan, Professor of Neurosurgery at King’s College Hospital and the lead surgeon for the study, said: “Deep brain stimulation is a powerful surgical technique that can transform lives. It will be a major leap forward if we can show efficacy in this very difficult disease with huge burden to the patients and society.”
During surgery, thin electrodes are carefully placed in precise locations of the brain. These locations are chosen based on the condition being treated. For addiction, the electrodes are placed in areas involved in reward, motivation, and decision-making.
Harry Bulstrode, Honorary Consultant Neurosurgeon at Cambridge University Hospitals NHS Foundation Trust and Clinical Lecturer at the University of Cambridge, said: "We see first-hand how deep brain stimulation surgery can be life-changing for patients with movement disorders such as Parkinson’s disease and essential tremor. Thanks to this trial, I am now hopeful that we can help patients and their families – who have often struggled for years – by targeting the parts of the brain linked to addiction."
Dr David Okai, Visiting Senior Lecturer from the Institute of Psychiatry, Psychology & Neuroscience, King’s College London, added: “DBS is safe, reversible and adjustable, so it offers a flexible option for managing chronic conditions. We hope it will offer a lifeline to help improve the quality of life for patients whose treatment until now has been unsuccessful.”
Details on the trial, including criteria for participation and how to sign up, can be found on the Brain-PACER website.
The research is supported by the Medical Research Council, UK Research & Innovation.
People suffering from severe alcohol and opioid addiction are to be offered a revolutionary new technique involving planting electrodes in the brain to modulate brain activity and cravings and improve self-control.
We’ve seen how effective deep brain stimulation can be for neurological disorders from Parkinson’s to OCD to depression. We want to see if it can also transform the lives of people with intractable alcohol and opioid addictionValerie VoonShamir R, Noecker A and McIntyre CGraphic demonstrating deep brain stimulation
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
Routine asthma test more reliable in the morning and has seasonal effects
Using real world data from 1,600 patients, available through a database created for speeding up research and innovation, the team also found that its reliability differs significantly in winter compared to autumn.
Asthma is a common lung condition that can cause wheezing and shortness of breath, occasionally severe. Around 6.5% of people over six years old in the UK are affected by the condition. Treatments include the use of inhalers or nebulisers to carry medication into the lungs.
The majority of asthma attacks occur at nighttime or early in the morning. Although this may in part be due to cooler nighttime air and exposure to dust mites and allergens, it also suggests that circadian rhythms – our ‘body clocks’ – likely play a role.
Researchers at the Victor Phillip Dahdaleh Heart and Lung Research Institute, a collaboration between the University of Cambridge and Royal Papworth Hospital NHS Foundation Trust (RPH), wanted to explore whether these circadian rhythms may also have an impact on our ability to diagnose asthma, using routinely performed clinical testing.
Typically, people with suspected asthma will be offered a spirometry test, which involves taking a deep breath in, then breathing out hard and fast for as long as possible into a tube to assess lung function. They will then be administered the drug salbutamol via an inhaler or nebuliser, and shortly afterwards retake the spirometry test.
Salbutamol works by opening up the airways, so a positive test result – that is, a difference in readings between the initial and follow-up spirometry tests – means that the airways must have been narrower or obstructed to begin with, suggesting that the patient could have asthma.
Cambridge University Hospitals NHS Foundation Trust (CUH) has recently set up the Electronic Patient Record Research and Innovation (ERIN) database so that researchers can access patient data in a secure environment to help in their research and speed up improvements in patient care.
Using this resource, the Cambridge team analysed data from 1,600 patients referred to CUH between 2016 and 2023, adjusted for factors such as age, sex, body mass index (BMI), smoking history, and the severity of the initial impairment in lung function.
In findings published today in Thorax, the researchers found that starting at 8.30am, with every hour that passed during the working day, the chances of a positive response to the test – in other words, the patient’s lungs responding to treatment, suggesting that they could have asthma – decreased by 8%.
Dr Ben Knox-Brown, Lead Research Respiratory Physiologist at RPH, said: “Given what we know about how the risk of an asthma attack changes between night and day, we expected to find a difference in how people responded to the lung function test, but even so, we were surprised by the size of the effect.
“This has potentially important implications. Doing the test in the morning would give a more reliable representation of a patient's response to the medication than doing it in the afternoon, which is important when confirming a diagnosis such as asthma.”
The researchers also discovered that individuals were 33% less likely to have a positive result if tested during autumn when compared to those tested during winter.
Dr Akhilesh Jha, a Medical Research Council Clinician Scientist at the University of Cambridge and Honorary Consultant in Respiratory Medicine at CUH, said that there may be a combination of factors behind this difference.
“Our bodies have natural rhythms – our body clocks,” Jha said. “Throughout the day, the levels of different hormones in our bodies go up and down and our immune systems perform differently, for example. Any of these factors might affect how people respond to the lung function test.
“The idea that the time of day, or the season of the year, affects our health and how we respond to treatments is something we’re seeing increasing evidence of. We know, for example, that people respond differently to vaccinations depending on whether they’re administered in the morning or afternoon. The findings of our study further support this idea and may need to be taken into account when interpreting the results of these commonly performed tests.”
Reference
Knox-Brown, B et al. The effect of time of day and seasonal variation on bronchodilator responsiveness: The SPIRO-TIMETRY study. Thorax; 12 March 2025; DOI: 10.1136/thorax-2024-222773
A lung function test used to help diagnose asthma works better in the morning, becoming less reliable throughout the day, Cambridge researchers have found.
Throughout the day, the levels of different hormones in our bodies go up and down and our immune systems perform differently. Any of these factors might affect how people respond to the lung function testAkhilesh JhaKoldunov (Getty Images)Man testing breathing function by spirometry - stock photo
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
When inflammation goes too far
Clare Bryant, Professor of Innate Immunity, is a molecular detective. Clare allows us to see how inflammation functions across species, and when our defence systems go too far.
Chronic diseases misdiagnosed as psychosomatic can lead to long term damage
A study involving over 3,000 participants – both patients and clinicians – found that these misdiagnoses (sometimes termed “in your head” by patients) were often associated with long term impacts on patients’ physical health and wellbeing and damaged trust in healthcare services.
The researchers are calling for greater awareness among clinicians of the symptoms of such diseases, which they recognise can be difficult to diagnose, and for more support for patients.
Autoimmune rheumatic diseases such as rheumatoid arthritis, lupus and vasculitis are chronic inflammatory disorders that affect the immune system and can damage organs and tissues throughout the body. They can be very difficult to diagnose as people report a wide range of different symptoms, many of which can be invisible, such as extreme fatigue and depression.
Dr Melanie Sloan from the University of Cambridge led a study exploring patient-reported experiences from two large groups, each of over 1,500 patients, and in-depth interviews with 67 patients and 50 clinicians. The results are published today in Rheumatology.
Patients who reported that their autoimmune disease was misdiagnosed as psychosomatic or a mental health condition were more likely to experience higher levels of depression and anxiety, and lower mental wellbeing. For example, one patient with multiple autoimmune diseases said: “One doctor told me I was making myself feel pain and I still can’t forget those words. Telling me I’m doing it to myself has made me very anxious and depressed.”
More than 80% said it had damaged their self-worth and 72% of patients reported that the misdiagnosis still upset them, often even decades later. Misdiagnosed patients also reported lower levels of satisfaction with every aspect of medical care and were more likely to distrust doctors, downplay their symptoms, and avoid healthcare services. As one patient reported, it “has damaged my trust and courage in telling doctors very much. I even stopped taking my immunosuppressive medicine because of those words”.
Following these types of misdiagnoses, patients often then blamed themselves for their condition, as one individual described: “I don’t deserve help because this is a disease I’ve brought on myself. You go back to those initial diagnosis, you’ve always got their voices in your head, saying you’re doing this to yourself. You just can’t ever shake that. I’ve tried so hard.”
One patient described the traumatising response their doctor’s judgement had on them: “When a rheumatologist dismissed me I was already suicidal, this just threw me over the edge. Thankfully I am terrible at killing myself, it’s so much more challenging than you think. But the dreadful dismissiveness of doctors when you have a bizarre collection of symptoms is traumatizing and you start to believe them, that it’s all in your head.”
Dr Melanie Sloan, from the Department of Public Health and Primary Care at the University of Cambridge, said: “Although many doctors were intending to be reassuring in suggesting a psychosomatic or psychiatric cause for initially unexplainable symptoms, these types of misdiagnoses can create a multitude of negative feelings and impacts on lives, self-worth and care. These appear to rarely be resolved even after the correct diagnoses. We must do better at helping these patients heal, and in educating clinicians to consider autoimmunity at an earlier stage.”
Clinicians highlighted how hard it was to diagnose autoimmune rheumatic diseases and that there was a high risk of misdiagnosis. Some doctors said they hadn’t really thought about the long-term problems for patients, but others talked about the problems in regaining trust, as one GP from England highlighted: “They lose trust in anything that anyone says…you are trying to convince them that something is OK, and they will say yes but a doctor before said that and was wrong.”
However, there was evidence that this trust can be rebuilt. One patient described having been “badly gaslit by a clinician”, but that when they told the clinician this, “She was shocked and had no idea … She was great. Took it on the chin. Listened and heard. Apologised profusely…For me, the scar of the original encounter was transformed into something much more positive.”
Mike Bosley, autoimmune patient and co-author on the study, said: “We need more clinicians to understand how a misdiagnosis of this sort can result in long-standing mental and emotional harm and in a disastrous loss of trust in doctors. Everyone needs to appreciate that autoimmune conditions can present in these unusual ways, that listening carefully to patients is key to avoiding the long-lasting harm that a mental health or psychosomatic misdiagnosis can cause.”
The study authors recommend several measures for improving support for patients with autoimmune rheumatological diseases. These are likely to apply for many other groups of patients with chronic diseases that are often misunderstood and initially misdiagnosed.
They propose that clinicians should talk about previous misdiagnoses with patients, discuss and empathise with their patients as to the effects on them, and offer targeted support to reduce the long-term negative impacts. Health services should ensure greater access to psychologists and talking therapies for patients reporting previous misdiagnoses, which may reduce the long-term impact on wellbeing, healthcare behaviours, and patient-doctor relationships. Education may reduce misdiagnoses by encouraging clinicians to consider systemic autoimmunity when they assess patients with multiple, seemingly unconnected, physical and mental health symptoms.
Professor Felix Naughton, from the Lifespan Health Research Centre at the University of East Anglia, said: “Diagnosing autoimmune rheumatic diseases can be challenging, but with better awareness among clinicians of how they present, we can hopefully reduce the risk of misdiagnoses. And while there will unfortunately inevitably still be patients whose condition is not correctly diagnosed, with the correct support in place, we may be able to lessen the impact on them.”
The research was funded by LUPUS UK and The Lupus Trust.
Reference
Sloan, M, et al. “I still can’t forget those words”: mixed methods study of the persisting impacts of psychosomatic and psychiatric misdiagnoses. Rheumatology; 3 Mar 2025; DOI: 10.1093/rheumatology/keaf115
A ‘chasm of misunderstanding and miscommunication’ is often experienced between clinicians and patients, leading to autoimmune diseases such as lupus and vasculitis being wrongly diagnosed as psychiatric or psychosomatic conditions, with a profound and lasting impact on patients, researchers have found.
These types of misdiagnoses can create a multitude of negative feelings and impacts on lives, self-worth and careMel SloanAnnie SprattA person laying in a bed under a blanket
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.